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Abstract. Discrete physical (G, Q,, U )  systems are defined in terms of a graph G, a set of 
localised states Q, and a potential U. The dimensionality of the system is defined and shown 
to be a global property of a graph G. The existence of the thermodynamic limit is 
investigated and shown to exist if G is dimensional and the potential is short-ranged. 

1. Introduction 

This paper is concerned with the study of certain aspects of the statistical mechanics of 
discrete physical systems. A discrete physical system will be taken to consist of three 
elements: a graph (that is, a set of ‘points’ with specified ‘connections’ between the 
points) which is analogous to the space in which the physics is embedded; a set of 
localised states associated with each vertex of the graph; and a potential related to the 
edges of the graph. These elements will be defined more precisely below. We 
emphasise that the concept of Euclidean space plays no part in the systems we shall 
study. Our major interest is in those aspects of the system which are affected by the 
graphical definition of the underlying space. In particular we shall define the concept of 
dimensionality and show the relation to the thermodynamic limit. 

The motivation for this study comes from three sources. First, the use of a graph as 
the underlying space allows one to construct a mathematical framework for dealing with 
random arrangements. The need for such a framework has been felt in studies of liquids 
(Finney 1977). Second, discrete (lattice) models have been used with advantage in the 
study of hadron physics (Kadanoff 1977, Kogut 1979). Third, the exact enumeration 
method used in the study of the critical behaviour of the percolation problem (Essam 
1973), magnetic systems (Domb 1973) and polymers (McKenzie 1976) makes success- 
ful predictions of the behaviour while treating that underlying space as a graph. With 
regard to methodology and notation we have been influenced by the works of Biggs 
(1977) and Preston (1974). The physical implications of the ideas presented here will 
be explored in subsequent publications. 

2. Definitions 

A graph G of order n is a set of vertices V ( G )  = {xl, . . . , x,,}, together with a set of 
edges E(G)  ={el ,  . , . , e m } .  Each edge can be written as an unordered pair of vertices, 
thus ei = [xil, xi21 where x i l ,  x i 2 €  V(G) .  We shall not be concerned with digraphs, 
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multigraphs or graphs with loops. The edge e = [x, y ]  is incident at x and y. The local 
degree p (x) of x is the number of edges incident at x. If for all x E V ( G ) ,  p ( x )  S kG < a, 
we say that G is locally bounded. The cardinality of a set A will be denoted by IAI. 

A path ~ ( x ,  y )  is a sequence of edges: 

/J. (x, y = ([x, XI], [ X l ,  xz1, * * * , [ x m  -1 ,  Y I). 
The length of a path, I/J. (x, y ) l ,  is the number of edges in the sequence. Let MG(/J. (x, y ) )  
be the set of all paths in G between x and y .  The distance &(x, y )  in G between x and y 
is defined as &(x, y )  =inf{/Al: A EMG(/J.(x, y ) ) } .  A graph G is connected if 
M G ( ~ ( x ,  y ) ) # d  for all x, y E V ( G ) .  If we define &(x, x ) = O ,  the set DG = 
{LZG(x, y ) :  x, y E V ( G ) }  is a metric for the graph, and in particular the elements of DG 
satisfy the triangle inequality 

dG(X, Y)+dG(Y, Z ) > d G ( X ,  2 ) .  

We shall be concerned hereafter with locally bounded, connected graphs whose 
vertex set is countable. 

To introduce a physics on to the graph G we define a set of localised states A, 
associated with each vertex x E V ( G ) .  The set of localised states may be finite, 
countably infinite, a subset of the real numbers or a Hilbert space or whatever. In this 
study it will not be necessary to specify A in detail. Many of the individual features of 
different physical models arise by specifying A and associating an algebraic structure 
with A ,  and with the interaction potential to be defined shortly. 

A graph B is a subgraph of G, B G G, if V ( B )  E V ( G )  and if x, y E V ( B )  with 
[x, y ] ~  E (G)  then [x, y ]  E E@) .  Let us denote the indexed class of localised states of G 
by qG = { A x :  x E V ( G ) }  and the Cartesian product of q~ by @G = I I X 6 v ( ~ )  A,. @G will 
be known as the state space of G. If V ( G )  = { x l :  1 G i G n = I V(G)I} then w E @G can be 
represented by the n-tuple w = ( V I ,  v 2 ,  . . . , v,) with Y, E A , .  If B c G, so that V ( B )  = 
{xl,.  . . , xp}, then 

TI3 (w E @ G I  = ( v x ~  5 vx, 1 * > vxp) E @B 9 

that is 7~ projects the state of G into that of B. We shall often use the notation wG 
meaning o E 

We suppose now that there exists a potential function U which maps @G into the 
real numbers, U : QG .+ R. A discrete physical system (G, aG, U )  consists therefore of 
the graph G, the state space @G and the potential U. To each w E @G we associate a 
positive weight I ( w )  = exp( U ( w ) ) .  We then define the probability of a Gibbs state of 
the system (G, QG, U )  by 

The partition function of the system is determined by the normalising constant namely 

z G =  1 I (&)) .  
W E O G  

The equilibrium properties of the system follow in the usual way from the partition 
function and its log derivatives. 

Following Preston (1974) we define an interaction potential .TA : @ A  .+ R by 
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whence, using Mobius inversion or the principle of inclusion-exclusion (Rota 1964, 
Feller 1960) 

Here UG(W) is the 'global' weight attached to state w while the J A ( w )  conveniently 
divide V,(W) into a sum of weights attached to each vertex, edge, and so on of the graph 
G. 

For physical reasons there is a more-or-less intimate connection between the 
interaction potentials J and the graph G. One may view the vertices of the graph as 
physical entities such as atoms or spins. The edges of the graph then indicate the atoms 
which interact directly, or vice versa, the nearest-neighbour potential determines the 
edges of the graph. Triplet forces, quadruplet forces, and so on may be included if 
desired, but the graph model becomes unsuitable for practical purposes if one continues 
too far on those lines. 

3. Graph dimensionality 

Certain properties of phase transitions, notably critical exponents, appear to depend 
solely on the dimensionality of the underlying space, or lattice, for a given model. The 
dimensionality of lattice models is defined with reference to the embeddibility of the 
lattice in Euclidean d-dimensional space, or at least into Zd where Z is the set of 
integers. We require here a definition of the dimensionality of a graph independent of a 
relation to Euclidean space, that is a definition in terms of the graph alone. We have 
chosen to base the idea of dimensionality on how fast the graph grows from a given 
vertex. We shall show that the growth rate for infinite graphs is independent of the 
choice of origin, so that dimensionality is a property of the graph as a whole, not a local 
property. 

Let G be a locally bounded, infinite, connected graph with maximum local degree 
kc. Choose a~ V ( G )  and let us define the sets XP c V ( G )  by XP = 
{x : x E V ( G ) ,  dG(x, a )  = i, i 2 0). We shall call X,* the nth ring with respect to a and 
the sequence (X,", XP, , . . ) an a-sequence. Since G is connected no X," is empty and 
the a-sequence does not terminate. We define also the sets Y," = UT=, Xi" known as 
the nth ball with respect to a.  It is convenient to use the notation c: = IX,"I and 
C," = I Y,* 1, that is C," = ZYx0 cy. Since G is connected, c: 3 1 and C," 2 n. 

We shall now say that G is regular if for all a E V ( G )  the growth rate, e:, can be 
described by a real valued strictly positive, monotonic function of N, & ( a ) ;  that is, for 
n 2 1 there exist finite non-zero real numbers M and N such that 

It is convenient to introduce an abbreviated notation for (1). Thus given two sequences 
F = ( f n :  n E Z , ~ ,  > O )  and H = ( h , :  n E Z ,  hn>O) we shall say that 

fn-hn,[N,M;noI ,  
if for all n no 

O <  N < fn/hn s M  < CO. 
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The relation -, or 'behaves as', is an equivalence relation since if f ,  - h,, [N, M ;  no], 
then h, - f,, [1/M, 1 / N ;  no];  and if f ,  - h,, [NO, MO; no] and h, -I,, [NI, M I ;  1111, then 
f ,  - I,, [inf(No, NI), sup(M0, MI) ;  sup(no, nl)]. We note that if two sequences f ,  and h, 
are such that f,4 h, then either f,/h, +CO or hfl/fn+CY) as n+m. 

It is clear that if c: -dm(n), [N,,M,; 11, then there exists a function $,(n) = 

Our main result of this section is that if G is regular then the functions ~ $ ~ ( n )  do not 
depend significantly on the choice of origin a. We shall require the following inter- 
mediate result. 

&(i) such that C," -$,(a), [N,,M,; 11. 

Lemma 1. For all n >no,  q5a(n)4q5p(n) if and only if $ u ( n ) 4 $ p ( n ) .  

Pro0 f .  

as one chooses such that d e ( n ) >  K4P(n) .  Then 
(i) Suppose q5u(n) 4 q5p(n). Then for all n 3 no there is a K ( n O )  which can be as large 

But at least one term in the sum on the right-hand side of the above equation must be 
positive, whence 

4 a  1) > KdJp ( n  1) 

for some n l  with 1 G nl G n. But since & ( n )  is monotonic we must have 

q5,(n)>Kq5P(n) for alln 3 n 1 .  

Proof. We shall show that the assumption that r$P(n)/4,(n)>K where K can be as 
large as one likes, that is qh,(n)#q5p(n), leads to a contradiction and hence 
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q ! ~ ~ ( n ) / & ( n ) S g ~  <CO.  But from symmetry we must also have 4 , ( n ) / ~ $ ~ ( n ) ~  l / go<  
CO, and hence 

o<go c 4 p ( n ) / &  ( n )  g l <  00, 

that is & ( n )  - q5@(n). 
We note first, as a consequence of lemma 1, that if & ( n ) / & ( n ) > K  for all n a n o  

where K can be made as large as one chooses, then there is an nl and a K'  > K such that 
&(n)/+,(n)>K'for  all n artl. 

To prove the contradiction we shall show that ILp(n)/t),(n) is bounded above and 
hence ~$~(n)/c$,(n)%K. Thus suppose C," -&(n) ,  [N,,M,; 11 and C! - t )p(n) ,  
[No, M O ;  11. Define the set PEp = Y," fl Yf and choose nap > m so that PEp is not 
empty (figure 1). Let C,' = PEp - Pzf1 so that since PEP1 c PEp we have 

lc,'I/IP;pi =s 1. 

Figure 1. Venn diagram of the the sets introduced in the proof of Proposition 1. 

Furthermore, since PEp = Y," we must have 

lP;p/=s c," sM, t ) , (n) .  

We shall now show that 

N p f ) p ( n )  c c! s lc,'lk: + p;p/. 

Consider the set Q = Yf - P;'. If y E 0 then any path F (  p, y )  must contain a member 
of C,', Let x be such a vertex and p ( p , .  . . , x ,  . . , y )  be one of the shortest paths 
between /3 and y ,  so that dG( p, y )  = dG( p, x )  + & ( x ,  y )  n. From the definition of C,' 
either dG(x ,  (U) = n or d G ( x ,  p )  = n of which the second possibility must be excluded. 
But from the triangle inequality we have 

~ G ( x , ~ ) + ~ G ( ( u , ~ ) ~ ~ G ( x ,  a ) = n  
whence 

~ G ( x ,  Y ) = ~ G ( P ,  Y ) - ~ G ( P , x ) = ~ ~ - ( ( ~ G ( ( u , x ) - ~ G ( ( u , P ) )  
= n - ( n  - m )  

= m. 

Thus any vertex in Q can be reached from a vertex in C,' in, at most, m steps. But since 
the maximum local degree of G is kG, the number of vertices in Q can be most ICclkz. 
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Hence we obtain 

and 

Putting the inequalities (2) and (3) together we obtain 

Hence for any finite value of m, 4tp(n)/$,,(n) is bounded above (which proves the 
contradiction). 

Corollary. The growth rate q5a(n) is characteristic of the graph G, since any vertex of G 
can be reached from LY in a succession of finite steps. Hence we can write 4 G ( n ) -  

If $ G ( n )  - n '-' we say that the graph is a d-dimensional. In this case, the number of 
vertices in the ball is given by $ G ( n )  - n d .  Thus d G ( n ) / & G ( n )  - l / n  which tends to zero 
as II tends to infinity and hence the ratio of 'surface' to 'volume' tends to zero with 
increasing size. 

A graph G is homogeneous (or vertex transitive) if every vertex is equivalent to 
every other vertex (in the sense that one obtains the same canonical description of the 
graph (McKenzie 1975) whatever vertex one chooses to label as vertex 1). We shall 
term a homogeneous locally bounded infinite graph a lattice. Clearly Proposition 1 is 
true trivially for all lattices. We note that our definition of dimensionality agrees with 
the accepted notion for the common lattices (table 1). However, we are in a position to 
cope with graphs such as 

40 ( n  ) *  

0 . 0 .  0 . 0 .  

for which c, - 1, [2 ,4;  31, and hence is one-dimensional. Furthermore, for any 
connected graph c, 3 1 so that the lowest dimensionality is one. It is not inconceivable 
that there exist graphs with non-integral dimensionality. 

If q5G(n) -,U, with /1. > 1, we say that G is a Bethe graph. In this case $G(n)  = 
X ; & ( i )  -,U" so that q5G(n) /$G(n)-A( ,u)  = a  constant. That is for Bethe graphs the 
'surface' is as large as the 'volume'. We note that for locally bounded graphs with 
maximum local degree kG, the number of vertices in ring X ,  is given by 

C,, S (kG - l ) C n - i  C ( k ~  -I)'* 

so that the fastest growth rate is k "  with ,U = ko - 1. 
The concept of dimensionality or growth rate is independent of how well the graph is 

connected. For example, thc growth rate of G can be defined by choosing a spanning 
tree rooted at a particular vertex as origin. The remaining edges of G can be replaced, 
remembering that the maximum local degree is kG, to construct a wide variety of 
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Table 1. Dimensionality of common lattices. 

Lattice G d G  ( n  1 Dimensionality 

Linear chain 
Honeycomb 
Single quadratic 
Triangular 
Diamond 
Single cubic 
Body-centred cubic 
Face-centred cubic 
4-d hypercubic 
5 -d hypercubic 

2 
3n  
4n 
6n 
a ( 1 0 n 2 + 7  +(-1)") 
4 n 2 + 2  
6n + 2  
1 0 n 2 + 2  
5 ( n Z + 2 )  
$ ( 2 n 4 +  10n2 + 3) 

1 
2 
2 
2 
3 
3 
3 
3 
4 
5 

different graphs with varying degrees of connectivity. We shall return to the question of 
the connectivity of an infinite graph, which is related to existence of a phase transition 
for the graph, in a subsequent paper. 

Our definition of dimensionality is closely related to the problem of whether a 
random walk on a graph is recurrent. A generalisation of this problem has been studied 
by Nash-Williams (1959) who showed that, in our notation, the graph is recurrent if 
1 /&(n)  diverges. Thus, with 4G(n)--nd- ' ,  all graphs with dimension less than or 
equal to two are recurrent. Nasli-Williams used a generalisation of the concept of rings, 
by defining a sequence of finite non-empty nested subgraphs of the graph rather than 
the a-sequence employed here. We prefer to use the a-sequence because it is easier to 
relate to applications and because the a-sequence is directly related to the canonical 
description of the graph. Thus to study the effect of changing from one discrete physical 
system to another by changing the graph alone it is most useful to have a definition of 
dimensionality which is a property of the description of the graph. 

The definition of dimensionality of Biggs (1977) namely the repetition of a basic 
figure, that is a finite graph, under the action of a group is related to the definition given 
here in the sense that a given graph will have the same dimensionality according to both 
definitions. For example, one can deduce that for the d-dimensional hypercubic 
lattices, the appropriate group implies that the generating function 

with cyclic boundary conditions. This generating function gives the appropriate 
coefficients quoted in table 1. However, the definition of dimensionality in terms of a 
group is only applicable to graphs which have particular symmetry properties whereas 
the definition in terms of growth rate is not so restricted. 

4. The thermodynamic limit 

A discrete physical system (G, 0, U )  is related to the world of experimental physics by 
defining the free energy by 

FG = In ZG. (4) 
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To be sensible, physically, the free energy should be an extensive quantity, that is F 
should be proportional to the size of the system. Here the size of the system is the 
number of vertices in the graph. The physical volume of the system is defined by 
associating a volume v with each vertex, or possibly a different volume with each 
localised state. Hence for a finite graph we should obtain FG OC 1 V(G)I. 

For an infinite graph we must specify how the graph becomes infinite. We propose 
to use the definition of an a-sequence. Let us define therefore the sequence of nested 
sub-graphs GZ = G by V(GZ) = Y,", E(GZ) = {[x, y ] :  x ,  y E Y,", [x, y ] ~  E(G)}  so that 
one obtains G in the limit as n +CO of G:. We wish to investigate under what 
circumstances 

exists. This approach to the thermodynamic limit will be known as taking the limit in 
the ring sense. It turns out that the major requirement for the existence of the limit is 
that the interaction potentials JB should be short-ranged and of bounded variation. It 
will also become apparent that the existence of the limit is independent of the choice of 

We shall say that a potential is short-ranged if there is a q <CO such that for all w 
CY. 

and for any x E V(G)  

A c G  
A#x 

where llz E RI1 is the absolute value of z .  Clearly (6) covers a very wide range of possible 
potentials. However, one requirement on the potential to satisfy (6 )  is that JA(w) is 
bounded above and below. Furthermore, with 1 V(A)/  = n, JA gives the contribution of 
n-body forces. To satisfy (6) the contribution of n-body forces must decrease 
sufficiently fast as n increases. The easiest way in which this could be accomplished is 
that JA = 0 for n greater than some specified limit. One should note that the contribu- 
tion of all subgraphs for a given graph A is the number of embeddings of A on G which 
include x and that this number is finite since G is locally bounded. 

The requirement (6) is a condition on the interaction potential not including the 
contribution from each vertex singly. We shall also require the condition that 

exists, where x E V(G)  and A, is the set of localised states. Here g, is merely the 
partition function of a single vertex. 

We are now in a position to state 
Proposition 2. If (GE, @, U )  form a sequence of discrete physical systems in the ring 
sense with n 2 0, and U is defined by an interaction potential JA, A c GZ, which satisfies 
conditions (6) and (7) above, then f , ,  = In ZG,/C," is bounded above and below, and if 
G = lim,,m GZ is d-dimensional then lim,,oa f,, exists. 
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Since I V(A) n V(X,")I 2 1 > 0, we must have, using ( 6 ) ,  

which becomes 

Using (7 )  we obtain 

C I ( w l )  n (e-'gx)<ZGP, I ( w l )  (e'gx) 
U1 x c x :  U 1  xcx::  

or 

ZG;-l  (e-'gx)'; < Z G ;  < Z G ; _ l  (e'gx)cz. 

Iterating (8) for n 0 we obtain 

Z G Z P ~  <ZG; < Z G $ Q ~  

where, since G," is the single vertex a, ZGg = g,, and P = e-' g, and Q = e' g,. 
Hence 

and since C; increases indefinitely with n, (9) shows that In ZG,/C; is bounded. 
From (8) we also, obtain the inequalities 

c: In P < In ZG;  -In Z G E . . ~  < c: In Q 

whence 

Using (9) and the fact that In gx/C:-, + 0 as n +CO we obtain 

If G is d-dimensional c: /C:  - l / n  and the right-hand side of (10) tends to zero as n 
tends to infinity and the limit fn exists. For Bethe graphs, the ratio c:/C: tends to a 
constant so that the thermodynamic limit does not necessarily exist for discrete physical 
systems based on such graphs. 
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Corollary. It should be evident from the above proof that the proof is unchanged on 
replacing a by p. Thus the proposition is true independently of the choice of origin a 
and hence the thermodynamic limit is a property of the discrete physical system. 
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